

Degrees of Cleanliness of Blast-Cleaned Surfaces*

*Images shown are previously uncoated surfaces, viewed without magnification

BRUSH-OFF

Tightly adherent mill scale and rust may remain on the surface. Mill scale and rust are considered adherent if they cannot be removed with a dull putty knife.

SSPC-SP 7

NACE No. 4
SA-1

COMMERCIAL

Evenly dispersed very light shadows,
streaks and discolorations caused by stains of rust and mill scale may remain on no more that 33% of the surface.

SSPC-SP 6

NACE No. 3
SA-2

NEAR-WHITE METAL

Evenly dispersed very light shadows,
streaks and discolorations caused by stains of rust and mill scale may remain on 5% of the surface.

SSPC-SP 10
NACE No. 2
SA-2-1/2

WHITE METAL

Free of all visible oil, grease, dirt, dust, mill scale and rust.

SSPC-SP 5
 NACE No. 1
 SA-3

For the complete official guide to surface cleanliness, refer to SSPC-Vis-1: Guide and reference photographs for dry abrasive blast cleaning; SSPC Publication 02-12, www.sspc.org

	Nozzle Orifice	PRESSURE AT THE NOZZLE (PSI)								Air (cfm) Abrasive Use Compressor HP
		50	60	70	80	90	100	125	140	
	$\begin{aligned} & \text { No. } 2 \\ & \left(1 / 8^{\prime \prime}\right) \end{aligned}$	11	13	15	17	18.5	20	25	28	Air (cfm)
		. 67	. 77	. 88	1.01	1.12	1.23	1.52	1.70	Abrasive (cuft/hr.)
		67	77	88	101	112	123	152	170	Abrasive (lbs./hr.)
		2.5	3	3.5	4	4.5	5	5.5	6.2	Compressor hp
\geq	$\begin{gathered} \text { No. } 3 \\ (3 / 16 ") \end{gathered}$	26	30	33	38	41	45	55	62	Air (cfm)
¢		1.50	1.71	1.96	2.16	2.38	2.64	3.19	3.57	Abrasive (cuft/hr.)
T0		150	171	196	216	238	264	319	357	Abrasive (lbs./hr.)
¢		6	7	8	9	10	10	12	13	Compressor hp
$\begin{aligned} & \text { 을 } \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \text { No. } 4 \\ & \left(1 / 4^{\prime \prime}\right) \end{aligned}$	47	54	61	68	74	81	98	110	Air (cfm)
		2.68	3.12	3.54	4.08	4.48	4.94	6.08	6.81	Abrasive (cuft/hr.)
		268	312	354	408	448	494	608	681	Abrasive (lbs./hr.)
		11	12	14	16	17	18	22	25	Compressor hp
	$\begin{gathered} \text { No. } 5 \\ (5 / 16 ") \end{gathered}$	77	89	101	113	126	137	168	188	Air (cfm)
		4.68	5.34	6.04	6.72	7.40	8.12	9.82	11.0	Abrasive (cuft/hr.)
©		468	534	604	672	740	812	982	1100	Abrasive (lbs./hr.)
$\mathscr{0}$		18	20	23	26	28	31	37	41	Compressor hp
	No. 6 (3/8")	108	126	143	161	173	196	237	265	Air (cfm)
을		6.68	7.64	8.64	9.60	10.52	11.52	13.93	15.60	Abrasive (cuft/hr.)
E		668	764	864	960	1052	1152	1393	1560	Abrasive (lbs./hr.)
O		24	28	32	36	39	44	52	58	Compressor hp
	$\begin{gathered} \text { No. } 7 \\ (7 / 16 ") \end{gathered}$	147	170	194	217	240	254	314	352	Air (cfm)
		8.96	10.32	11.76	13.12	14.48	15.84	19.31	21.63	Abrasive (cuft/hr.)
		896	1032	1176	1312	1448	1584	1931	2163	Abrasive (lbs./hr.)
		33	38	44	49	54	57	69	77	Compressor hp
	$\begin{aligned} & \text { No. } 8 \\ & \left(1 / 2^{\prime \prime}\right) \end{aligned}$	195	224	252	280	309	338	409	458	Air (cfm)
		11.60	13.36	15.12	16.80	18.56	20.24	24.59	27.54	Abrasive (cuft/hr.)
		1160	1336	1512	1680	1856	2024	2459	2754	Abrasive (lbs./hr.)
		44	50	56	63	69	75	90	101	Compressor hp

Pressure Loss in Air Hose

Pressure Loss in Air Hose		
I.D.	Pressure Loss	Production Loss
$3 / 4^{\prime \prime}$	11.1 psi	16.6%
$1 "$	2.4 psi	3.6%
$1-1 / 4^{\prime \prime}$	0.7 psi	1.0%
$1-1 / 2^{\prime \prime}$	0.2 psi	0.3%

Based on 150 cfm @ 100 psi through 50 feet of compressor air hose.
For maximum efficiency, provide large air lines from the compressor to the blast machine. Place the compressor as near as possible to the blast operation. Use the largest air hose available.

Impact of Nozzle Wear on Air Consumption

Nozzle	Orifice Size	Increase in Air Consumption
No. 4	$1 / 4^{\prime \prime}(6.5 \mathrm{~mm})$	
No. 5	$5 / 16^{\prime \prime}(8.0 \mathrm{~mm})$	60% or more than No. 4
No. 6	$3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$	38% more than No. 5
No. 7	$7 / 16^{\prime \prime}(11.0 \mathrm{~mm})$	36% more than No. 6
No. 8	$1 / 2^{\prime \prime}(12.5 \mathrm{~mm})$	33% more than No. 7

System Air Volume Requirements @ 100 psi

Nozzle	Orifice Size	Volume of Air	Plus Helmet	Plus 50\% (Reserve)	Min. Air Requirement
No. 4	$\begin{gathered} 1 / 4^{\prime \prime} \\ (6.5 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 81 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 50 \\ & 1.4 \end{aligned}$	151 cfm $4.2 \mathrm{~m}^{3} / \mathrm{min}$
No. 5	$\begin{gathered} 5 / 16 " \\ (8.0 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 137 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 79 \\ & 2.2 \end{aligned}$	$\begin{gathered} 236 \mathrm{cfm} \\ 6.6 \mathrm{~m}^{3} / \mathrm{min} \end{gathered}$
No. 6	$\begin{gathered} 3 / 8^{\prime \prime} \\ (9.5 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 196 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 108 \\ & 3.0 \end{aligned}$	324 cfm $9.0 \mathrm{~m}^{3} / \mathrm{min}$
No. 7	$\begin{gathered} 7 / 16 " \\ \text { (11.0mm) } \end{gathered}$	$\begin{aligned} & 254 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 137 \\ & 3.9 \end{aligned}$	$\begin{gathered} 411 \mathrm{cfm} \\ 11.6 \mathrm{~m}^{3} / \mathrm{min} \end{gathered}$
No. 8	$\begin{gathered} 1 / 2^{\prime \prime} \\ (12.5 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 338 \\ & 9.6 \end{aligned}$	$\begin{aligned} & 20 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 179 \\ & 5.0 \end{aligned}$	$\begin{gathered} 537 \mathrm{cfm} \\ 16.1 \mathrm{~m}^{3} / \mathrm{min} \end{gathered}$

Minimum Compressor Air Line Sizes

Nozzle	Nozzle Orifice Size	Min. Air Line I.D.
No. 3	$3 / 16^{\prime \prime}(5.0 \mathrm{~mm})$	$1^{\prime \prime}(25.0 \mathrm{~mm})$
No. 4	$1 / 4^{\prime \prime}(6.5 \mathrm{~mm})$	$1^{\prime \prime}(25.0 \mathrm{~mm})$
No. 5	$5 / 16^{\prime \prime}(8.0 \mathrm{~mm})$	$1-1 / 4^{\prime \prime}(32.0 \mathrm{~mm})$
No. 6	$3 / 8^{\prime \prime}(9.5 \mathrm{~mm})$	$1-1 / 2^{\prime \prime}(38.0 \mathrm{~mm})$
No. 7	$7 / 16^{\prime \prime}(11.0 \mathrm{~mm})$	$2^{\prime \prime}(50.0 \mathrm{~mm})$
No. 8	$1 / 2^{\prime \prime}(12.5 \mathrm{~mm})$	$2^{\prime \prime}(50.0 \mathrm{~mm})$
No. 10	$5 / 8^{\prime \prime}(16.0 \mathrm{~mm})$	$2-1 / 2^{\prime \prime}(64.0 \mathrm{~mm})$
No. 12	$3 / 4^{\prime \prime}(19.0 \mathrm{~mm})$	$3^{\prime \prime}(76.0 \mathrm{~mm})$

Material	Mesh Size	Shape	Density lbs/ft ${ }^{3}$	Mohs	Friablility	\# of Cycles	Source	Typical Applications
Silica Sand*	6-270	-	100	5.0-6.0	High	1	Natural	Outdoor blast cleaning
Min. Slag	8-80	-	85-112	7.0-7.5	High	1-2	By-product	Outdoor blast cleaning
Garnet	8-300	*	130-145	7.0	Medium	2-2.5	Natural	Cleaning, finishing, deburring, etching
Steel Grit	10-325	-	230	8.0	Low	200+	Manufactured	Removing heavy scale
Garnet Shot	8-200	\bullet	280	8.0	Low	200+	Manufactured	Cleaning, peening
Aluminum Oxide	12-325	-	125	9.0	Medium	6-8	Manufactured	Cleaning, finishing, deburring, etching
Silicon Carbide	12-325	*	110	9.5	Medium	5-6	Manufactured	Surface prep on extremely hard substrates
Glass Bead	10-400	\bullet	85-90	5.5-6.0	Medium	8-10	Manufactured	Cleaning, finishing
Plastic	12-80	-	45-60	$3.0-4.0$	Low/Medium	8-10	Manufactured	Paint stripping, deflashing, cleaning
Bicarbonate of Soda	60-170	*	60	2.5	High	1	Manufactured	Cleaning, paint removal
XL Corn Hybrid Polymer	16-60	*	45	3.0	Low	14-17	Manufactured	Composite paint removal, adhesive deflash
Corn Cob	8-40	*	35-45	2.0-4.5	Medium	4-5	By-product	Removing paint from delicate surfaces

$$
\bullet \text { Angular } \mid \bullet=\text { Spherical }{ }^{*} \text { *Consult OSHA regulations before using silica sand as a blasting abrasive. }
$$

ISO 9001 certified. Clemco is committed to continuous product improvement.
©2016 Clemco Industries Corp. • One Cable Car Drive • Washington, MO 63090 • Phone: 636.239.4300 • Fax: 800.726.7559

